Exam. Code:

209003 4883

Subject Code

M.Sc. Physics 3rd Semester (Batch 2020-22)

NUCLEAR PHYSICS

Paper—PHY-504

Time Allowed—3 Hours]

[Maximum Marks—100

Note:—Attempt FIVE questions in all, selecting at least ONE question from each section. The fifth question may be attempted from any section. All questions carry equal marks.

SECTION-A

- 1. (a) Solve the wave equation for ground state of deuteron assuming square well potential. Is there any possibility of existence of the excited states in deuteron?
 - (b) Describe the form of tensor force and how does it affect the ground state of deuteron?
- 2. (a) Discuss effective range theory to study the nuclear interactions in the case of low energy n-p scattering.
 - (b) Define Fermi scattering length. What can we deduce from its sign and magnitude?

2372(2221)/IZ-8987

(Contd.)

SECTION-B

- 3. (a) What is the limiting value of fissility obtained from Bohr-Wheeler theory of fission? Also, derive expression for critical energy of deformation in case of light and heavy nuclei undergoing spontaneous fission.
 - (b) What is spin-parity of the following nuclei?

 25Mg, 55Mn, 19F
- 4. (a) Write a note on model accounting for the vibration spectra of the nucleus. Which energy states would be formed from the coupling of two quadrupole phonons of same energy?
 - (b) Using shell model, how can one determine the nuclear magnetic moments in the form of angular momentum 1? Find the same for ³⁹K, ⁴⁵Sc.

SECTION—C

- 5. (a) What are allowed and forbidden beta transitions and what are the criteria to differentiate between these transitions?
 - (b) What is the degree of forbiddenness in beta decay of the following nuclear transitions?

$$2^{+} \rightarrow 1^{+} \quad 2^{+} \rightarrow 5^{-} \quad 3/2^{-} \rightarrow 9/2^{-}$$
 $\frac{1}{2}^{+} \rightarrow 1/2^{-}\frac{1}{2}^{+} \rightarrow 3/2^{+}$

(Contd.)

6. (a) What would be the multipolarity of emitted EM radiation in the following transition?

$$2^{+} \rightarrow 1^{+} \quad 2^{-} \rightarrow 0^{+} \quad 0^{+} \rightarrow 0^{+} \quad 3^{-} \rightarrow 0^{+}$$

 $9/2^{-} \rightarrow 7/2^{+}$

(b) Explain the experiment to establish the violation of parity in beta decay.

SECTION-D

- 7. (a) Explain partial wave method to calculate the scattering cross sections and reaction cross section.
 - (b) State and explain Optical theorem.
- 8. (a) Discuss Breit Wigner formula for nuclear cross sections.
 - (b) What would be the cross section in case of interference between resonance and potential elastic scatterings?

200